Stock Price Prediction with LSTM

Rancy Chepchirchir
14 min readDec 19, 2022

--

LSTM networks were designed specifically to overcome the long-term dependency problem faced by recurrent neural networks RNNs (due to the vanishing gradient problem). LSTMs have feedback connections which make them different from more traditional feedforward neural networks.

This study is an effort towards predicting stock prices of AAPL, MSFT, and META for daily, weekly, and monthly frequencies with the use of an LSTM model.

We first have to import the necessary libraries:

import math
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
import seaborn as sns
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout, Activation
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
import warnings
warnings.filterwarnings('ignore')

The study employs daily, weekly, and monthly datasets across 3 stocks including; MSFT, AAPL, and META. The data was extracted from Yahoo finance at daily, weekly, and monthly intervals. Apple and Microsoft stock prices covered the period from 01–01–1999 to 12–08–2022 while Meta stock prices cover from 19–05–2012 to 12–08–2022.

Daily data

AAPL_daily = pd.read_csv("AAPL_daily.csv")
AAPL_daily = AAPL_daily.set_index('Date')
AAPL_daily.head()

Now let’s visualize the data for the ‘Close’ column:

plt.style.use('fivethirtyeight')
plt.figure(figsize=(16,8))
AAPL_daily['Close'].plot(title="Daily Apple Closing Stock Prices")
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.show()
MSFT_daily = pd.read_csv("MSFT_daily.csv")
MSFT_daily = MSFT_daily.set_index('Date')
MSFT_daily.head()

Now let’s visualize the data for the ‘Close’ column:

plt.style.use('fivethirtyeight')
plt.figure(figsize=(16,8))
MSFT_daily['Close'].plot(title="Daily Microsoft Closing Stock Prices")
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.show()
META_daily = pd.read_csv("META_daily.csv")
META_daily = META_daily.set_index('Date')
META_daily.head()

Now let’s visualize the data for the ‘Close’ column:

plt.style.use('fivethirtyeight')
plt.figure(figsize=(16,8))
META_daily['Close'].plot(title="Daily Meta Closing Stock Prices")
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.show()

Weekly data

AAPL_weekly = pd.read_csv("AAPL_weekly.csv")
AAPL_weekly = AAPL_weekly.set_index('Date')
AAPL_weekly.head()
plt.style.use('fivethirtyeight')
plt.figure(figsize=(16,8))
AAPL_weekly['Close'].plot(title="Weekly Apple Stock Prices")
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.show()
MSFT_weekly = pd.read_csv("MSFT_weekly.csv")
MSFT_weekly = MSFT_weekly.set_index('Date')
MSFT_weekly.head()
plt.style.use('fivethirtyeight')
plt.figure(figsize=(16,8))
MSFT_weekly['Close'].plot(title="Weekly Microsoft Stock Prices")
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.show()
META_weekly = pd.read_csv("META_weekly.csv")
META_weekly = META_weekly.set_index('Date')
META_weekly.head()
plt.style.use('fivethirtyeight')
plt.figure(figsize=(16,8))
META_weekly['Close'].plot(title="Weekly Meta Stock Prices")
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.show()

Monthly data

AAPL_monthly = pd.read_csv("AAPL_monthly.csv")
AAPL_monthly = AAPL_monthly.set_index('Date')
AAPL_monthly.head()
plt.style.use('fivethirtyeight')
plt.figure(figsize=(16,8))
AAPL_monthly['Close'].plot(title="Monthly Apple Stock Prices")
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.show()
MSFT_monthly = pd.read_csv("MSFT_monthly.csv")
MSFT_monthly = MSFT_monthly.set_index('Date')
MSFT_monthly.head()
plt.style.use('fivethirtyeight')
plt.figure(figsize=(16,8))
MSFT_monthly['Close'].plot(title="Monthly Microsoft Stock Prices")
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.show()
META_monthly = pd.read_csv("META_monthly.csv")
META_monthly = META_monthly.set_index('Date')
META_monthly.head()
plt.style.use('fivethirtyeight')
plt.figure(figsize=(16,8))
META_monthly['Close'].plot(title="Monthly Meta Stock Prices")
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.show()

Sorting & Standardizing the datasets

# Creating a new dataframe with only the 'Close' column
AAPL_daily_data, MSFT_daily_data, META_daily_data = AAPL_daily.filter(['Close']), MSFT_daily.filter(['Close']), META_daily.filter(['Close'])
AAPL_weekly_data, MSFT_weekly_data, META_weekly_data = AAPL_weekly.filter(['Close']), MSFT_weekly.filter(['Close']), META_weekly.filter(['Close'])
AAPL_monthly_data, MSFT_monthly_data, META_monthly_data = AAPL_monthly.filter(['Close']), MSFT_monthly.filter(['Close']), META_monthly.filter(['Close'])
# Converting the dataframe to a numpy array
AAPL_daily_dataset, MSFT_daily_dataset, META_daily_dataset = AAPL_daily_data.values, MSFT_daily_data.values, META_daily_data.values
AAPL_weekly_dataset, MSFT_weekly_dataset, META_weekly_dataset = AAPL_weekly_data.values, MSFT_weekly_data.values, META_weekly_data.values
AAPL_monthly_dataset, MSFT_monthly_dataset, META_monthly_dataset = AAPL_monthly_data.values, MSFT_monthly_data.values, META_monthly_data.values

# Get/Compute the number of rows to train the daily models on
training_AAPL_daily_data_len = math.ceil( len(AAPL_daily_dataset) *.8)
training_MSFT_daily_data_len = math.ceil( len(MSFT_daily_dataset) *.8)
training_META_daily_data_len = math.ceil( len(META_daily_dataset) *.8)
# Get/Compute the number of rows to train the weekly models on
training_AAPL_weekly_data_len = math.ceil( len(AAPL_weekly_dataset) *.8)
training_MSFT_weekly_data_len = math.ceil( len(MSFT_weekly_dataset) *.8)
training_META_weekly_data_len = math.ceil( len(META_weekly_dataset) *.8)
# Get/Compute the number of rows to train the monthly models on
training_AAPL_monthly_data_len = math.ceil( len(AAPL_monthly_dataset) *.8)
training_MSFT_monthly_data_len = math.ceil( len(MSFT_monthly_dataset) *.8)
training_META_monthly_data_len = math.ceil( len(META_monthly_dataset) *.8)
# here we are scaling the data to be values between 0 and 1 
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_AAPL_daily_data, scaled_MSFT_daily_data, scaled_META_daily_data = scaler.fit_transform(AAPL_daily_dataset), scaler.fit_transform(MSFT_daily_dataset), scaler.fit_transform(META_daily_dataset)
scaled_AAPL_weekly_data, scaled_MSFT_weekly_data, scaled_META_weekly_data = scaler.fit_transform(AAPL_weekly_dataset), scaler.fit_transform(MSFT_weekly_dataset), scaler.fit_transform(META_weekly_dataset)
scaled_AAPL_monthly_data, scaled_MSFT_monthly_data, scaled_META_monthly_data = scaler.fit_transform(AAPL_monthly_dataset), scaler.fit_transform(MSFT_monthly_dataset), scaler.fit_transform(META_monthly_dataset)
#Creating the daily scaled training data set
train_AAPL_daily_data = scaled_AAPL_daily_data[0:training_AAPL_daily_data_len , : ]
train_MSFT_daily_data = scaled_MSFT_daily_data[0:training_MSFT_daily_data_len , : ]
train_META_daily_data = scaled_META_daily_data[0:training_META_daily_data_len , : ]
#Creating the weekly scaled training data set
train_AAPL_weekly_data = scaled_AAPL_weekly_data[0:training_AAPL_weekly_data_len , : ]
train_MSFT_weekly_data = scaled_MSFT_weekly_data[0:training_MSFT_weekly_data_len , : ]
train_META_weekly_data = scaled_META_weekly_data[0:training_META_weekly_data_len , : ]
#Creating the monthly scaled training data set
train_AAPL_monthly_data = scaled_AAPL_monthly_data[0:training_AAPL_monthly_data_len , : ]
train_MSFT_monthly_data = scaled_MSFT_monthly_data[0:training_MSFT_monthly_data_len , : ]
train_META_monthly_data = scaled_META_monthly_data[0:training_META_monthly_data_len , : ]

#Spliting the daily data into x_train and y_train data sets
X_train_AAPL_daily, y_train_AAPL_daily = [], []
for i in range(60,len(train_AAPL_daily_data)):
X_train_AAPL_daily.append(train_AAPL_daily_data[i-60:i,0])
y_train_AAPL_daily.append(train_AAPL_daily_data[i,0])
X_train_MSFT_daily, y_train_MSFT_daily = [], []
for i in range(60,len(train_MSFT_daily_data)):
X_train_MSFT_daily.append(train_MSFT_daily_data[i-60:i,0])
y_train_MSFT_daily.append(train_MSFT_daily_data[i,0])
X_train_META_daily, y_train_META_daily = [], []
for i in range(60,len(train_META_daily_data)):
X_train_META_daily.append(train_META_daily_data[i-60:i,0])
y_train_META_daily.append(train_META_daily_data[i,0])

#Spliting the weekly data into x_train and y_train data sets
X_train_AAPL_weekly, y_train_AAPL_weekly = [], []
for i in range(60,len(train_AAPL_weekly_data)):
X_train_AAPL_weekly.append(train_AAPL_weekly_data[i-60:i,0])
y_train_AAPL_weekly.append(train_AAPL_weekly_data[i,0])
X_train_MSFT_weekly, y_train_MSFT_weekly = [], []
for i in range(60,len(train_MSFT_weekly_data)):
X_train_MSFT_weekly.append(train_MSFT_weekly_data[i-60:i,0])
y_train_MSFT_weekly.append(train_MSFT_weekly_data[i,0])
X_train_META_weekly, y_train_META_weekly = [], []
for i in range(60,len(train_META_weekly_data)):
X_train_META_weekly.append(train_META_weekly_data[i-60:i,0])
y_train_META_weekly.append(train_META_weekly_data[i,0])

#Spliting the monthly data into x_train and y_train data sets
X_train_AAPL_monthly, y_train_AAPL_monthly = [], []
for i in range(60,len(train_AAPL_monthly_data)):
X_train_AAPL_monthly.append(train_AAPL_monthly_data[i-60:i,0])
y_train_AAPL_monthly.append(train_AAPL_monthly_data[i,0])
X_train_MSFT_monthly, y_train_MSFT_monthly = [], []
for i in range(60,len(train_MSFT_monthly_data)):
X_train_MSFT_monthly.append(train_MSFT_monthly_data[i-60:i,0])
y_train_MSFT_monthly.append(train_MSFT_monthly_data[i,0])
X_train_META_monthly, y_train_META_monthly = [], []
for i in range(60,len(train_META_monthly_data)):
X_train_META_monthly.append(train_META_monthly_data[i-60:i,0])
y_train_META_monthly.append(train_META_monthly_data[i,0])
# Here we are Converting daily x_train and y_train to numpy arrays
X_train_AAPL_daily, y_train_AAPL_daily = np.array(X_train_AAPL_daily), np.array(y_train_AAPL_daily)
X_train_MSFT_daily, y_train_MSFT_daily = np.array(X_train_MSFT_daily), np.array(y_train_MSFT_daily)
X_train_META_daily, y_train_META_daily = np.array(X_train_META_daily), np.array(y_train_META_daily)

# Here we are Converting weekly x_train and y_train to numpy arrays
X_train_AAPL_weekly, y_train_AAPL_weekly = np.array(X_train_AAPL_weekly), np.array(y_train_AAPL_weekly)
X_train_MSFT_weekly, y_train_MSFT_weekly = np.array(X_train_MSFT_weekly), np.array(y_train_MSFT_weekly)
X_train_META_weekly, y_train_META_weekly = np.array(X_train_META_weekly), np.array(y_train_META_weekly)

# Here we are Converting monthly x_train and y_train to numpy arrays
X_train_AAPL_monthly, y_train_AAPL_monthly = np.array(X_train_AAPL_monthly), np.array(y_train_AAPL_monthly)
X_train_MSFT_monthly, y_train_MSFT_monthly = np.array(X_train_MSFT_monthly), np.array(y_train_MSFT_monthly)
X_train_META_monthly, y_train_META_monthly = np.array(X_train_META_monthly), np.array(y_train_META_monthly)
# Here we are reshaping the daily data into the shape accepted by the LSTM
X_train_AAPL_daily = np.reshape(X_train_AAPL_daily, (X_train_AAPL_daily.shape[0],X_train_AAPL_daily.shape[1],1))
X_train_MSFT_daily = np.reshape(X_train_MSFT_daily, (X_train_MSFT_daily.shape[0],X_train_MSFT_daily.shape[1],1))
X_train_META_daily = np.reshape(X_train_META_daily, (X_train_META_daily.shape[0],X_train_META_daily.shape[1],1))

# Here we are reshaping the weekly data into the shape accepted by the LSTM
X_train_AAPL_weekly = np.reshape(X_train_AAPL_weekly, (X_train_AAPL_weekly.shape[0],X_train_AAPL_weekly.shape[1],1))
X_train_MSFT_weekly = np.reshape(X_train_MSFT_weekly, (X_train_MSFT_weekly.shape[0],X_train_MSFT_weekly.shape[1],1))
X_train_META_weekly = np.reshape(X_train_META_weekly, (X_train_META_weekly.shape[0],X_train_META_weekly.shape[1],1))

# Here we are reshaping the monthly data into the shape accepted by the LSTM
X_train_AAPL_monthly = np.reshape(X_train_AAPL_monthly, (X_train_AAPL_monthly.shape[0],X_train_AAPL_monthly.shape[1],1))
X_train_MSFT_monthly = np.reshape(X_train_MSFT_monthly, (X_train_MSFT_monthly.shape[0],X_train_MSFT_monthly.shape[1],1))
X_train_META_monthly = np.reshape(X_train_META_monthly, (X_train_META_monthly.shape[0],X_train_META_monthly.shape[1],1))

Build and train the LSTM model:

# Build the LSTM network model for daily Apple stock
model = Sequential()
model.add(LSTM(units=50, return_sequences=True,input_shape=(X_train_AAPL_daily.shape[1],1)))
model.add(LSTM(units=50, return_sequences=False))
model.add(Dense(units=25))
model.add(Dense(units=1))
# here we are Compiling the model
model.compile(optimizer='adam', loss='mean_squared_error', metrics = ['mae', 'accuracy']) #
# here we are training the model
print(model.summary())
model.fit(X_train_AAPL_daily, y_train_AAPL_daily, batch_size=1, epochs=1, verbose=0)
# Build the LSTM network model for daily Microsoft stock
model = Sequential()
model.add(LSTM(units=50, return_sequences=True,input_shape=(X_train_MSFT_daily.shape[1],1)))
model.add(LSTM(units=50, return_sequences=False))
model.add(Dense(units=25))
model.add(Dense(units=1))
# here we are Compiling the model
model.compile(optimizer='adam', loss='mean_squared_error', metrics = ['mae', 'accuracy']) #
# here we are training the model
print(model.summary())
model.fit(X_train_MSFT_daily, y_train_MSFT_daily, batch_size=1, epochs=1, verbose=0)
# Building the LSTM network model for daily Meta stock
model = Sequential()
model.add(LSTM(units=50, return_sequences=True,input_shape=(X_train_META_daily.shape[1],1)))
model.add(LSTM(units=50, return_sequences=False))
model.add(Dense(units=25))
model.add(Dense(units=1))
# here we are Compiling the model
model.compile(optimizer='adam', loss='mean_squared_error', metrics = ['mae', 'accuracy']) #
# here we are training the model
print(model.summary())
model.fit(X_train_META_daily, y_train_META_daily, batch_size=1, epochs=1, verbose=0)
# Building the LSTM network model for weekly Apple stock
model = Sequential()
model.add(LSTM(units=50, return_sequences=True,input_shape=(X_train_AAPL_weekly.shape[1],1)))
model.add(LSTM(units=50, return_sequences=False))
model.add(Dense(units=25))
model.add(Dense(units=1))
# here we are Compiling the model
model.compile(optimizer='adam', loss='mean_squared_error', metrics = ['mae', 'accuracy']) #
# here we are training the model
model.fit(X_train_AAPL_weekly, y_train_AAPL_weekly, batch_size=1, epochs=1, verbose=0)
# Building the LSTM network model for weekly Microsoft stock
model = Sequential()
model.add(LSTM(units=50, return_sequences=True,input_shape=(X_train_MSFT_weekly.shape[1],1)))
model.add(LSTM(units=50, return_sequences=False))
model.add(Dense(units=25))
model.add(Dense(units=1))
# here we are Compiling the model
model.compile(optimizer='adam', loss='mean_squared_error', metrics = ['mae', 'accuracy']) #
# here we are training the model
print(model.summary())
model.fit(X_train_MSFT_weekly, y_train_MSFT_weekly, batch_size=1, epochs=1, verbose=0)
# Building the LSTM network model for weekly Meta stock
model = Sequential()
model.add(LSTM(units=50, return_sequences=True,input_shape=(X_train_META_weekly.shape[1],1)))
model.add(LSTM(units=50, return_sequences=False))
model.add(Dense(units=25))
model.add(Dense(units=1))
# here we are Compiling the model
model.compile(optimizer='adam', loss='mean_squared_error', metrics = ['mae', 'accuracy']) #
# here we are training the model
print(model.summary())
model.fit(X_train_META_weekly, y_train_META_weekly, batch_size=1, epochs=1, verbose=0)
# Building the LSTM network model for monthly Apple stock
model = Sequential()
model.add(LSTM(units=50, return_sequences=True,input_shape=(X_train_AAPL_monthly.shape[1],1)))
model.add(LSTM(units=50, return_sequences=False))
model.add(Dense(units=25))
model.add(Dense(units=1))
# here we are Compiling the model
model.compile(optimizer='adam', loss='mean_squared_error', metrics = ['mae', 'accuracy']) #
# here we are training the model
model.fit(X_train_AAPL_monthly, y_train_AAPL_monthly, batch_size=1, epochs=1, verbose=0)
# Building the LSTM network model for monthly Microsoft stock
model = Sequential()
model.add(LSTM(units=50, return_sequences=True,input_shape=(X_train_MSFT_monthly.shape[1],1)))
model.add(LSTM(units=50, return_sequences=False))
model.add(Dense(units=25))
model.add(Dense(units=1))
# model.add(Activation('sigmoid'))
# here we are Compiling the model
model.compile(optimizer='adam', loss='mean_squared_error', metrics = ['mae', 'accuracy']) #
# here we are training the model
print(model.summary())
model.fit(X_train_MSFT_monthly, y_train_MSFT_monthly, batch_size=1, epochs=1, verbose=0)
# Building the LSTM network model for monthly Meta stock
model = Sequential()
model.add(LSTM(units=50, return_sequences=True,input_shape=(X_train_META_monthly.shape[1],1)))
model.add(LSTM(units=50, return_sequences=False))
model.add(Dense(units=25))
model.add(Dense(units=1))
# here we are Compiling the model
model.compile(optimizer='adam', loss='mean_squared_error', metrics = ['mae', 'accuracy']) #
# here we are training the model
print(model.summary())
model.fit(X_train_META_monthly, y_train_META_monthly, batch_size=1, epochs=1, verbose=0)

Testing and Prediction

# Daily testing datasets
test_AAPL_daily_data = scaled_AAPL_daily_data[training_AAPL_daily_data_len - 60: , : ]
test_MSFT_daily_data = scaled_MSFT_daily_data[training_MSFT_daily_data_len - 60: , : ]
test_META_daily_data = scaled_META_daily_data[training_META_daily_data_len - 60: , : ]
# Weekly testing datasets
test_AAPL_weekly_data = scaled_AAPL_weekly_data[training_AAPL_weekly_data_len - 60: , : ]
test_MSFT_weekly_data = scaled_MSFT_weekly_data[training_MSFT_weekly_data_len - 60: , : ]
test_META_weekly_data = scaled_META_weekly_data[training_META_weekly_data_len - 60: , : ]
# Monthly testing datasets
test_AAPL_monthly_data = scaled_AAPL_monthly_data[training_AAPL_monthly_data_len - 60: , : ]
test_MSFT_monthly_data = scaled_MSFT_monthly_data[training_MSFT_monthly_data_len - 60: , : ]
test_META_monthly_data = scaled_META_monthly_data[training_META_monthly_data_len - 60: , : ]

#Creating the X_test and y_test for daily data sets
X_test_AAPL_daily_data, y_test_AAPL_daily_data = [], AAPL_daily_dataset[training_AAPL_daily_data_len : , : ]
X_test_MSFT_daily_data, y_test_MSFT_daily_data = [], MSFT_daily_dataset[training_MSFT_daily_data_len : , : ]
X_test_META_daily_data, y_test_META_daily_data = [], META_daily_dataset[training_META_daily_data_len : , : ]
#Creating the X_test and y_test for weekly data sets
X_test_AAPL_weekly_data, y_test_AAPL_weekly_data = [], AAPL_weekly_dataset[training_AAPL_weekly_data_len : , : ]
X_test_MSFT_weekly_data, y_test_MSFT_weekly_data = [], MSFT_weekly_dataset[training_MSFT_weekly_data_len : , : ]
X_test_META_weekly_data, y_test_META_weekly_data = [], META_weekly_dataset[training_META_weekly_data_len : , : ]
#Creating the X_test and y_test for monthly data sets
X_test_AAPL_monthly_data, y_test_AAPL_monthly_data = [], AAPL_monthly_dataset[training_AAPL_monthly_data_len : , : ]
X_test_MSFT_monthly_data, y_test_MSFT_monthly_data = [], MSFT_monthly_dataset[training_MSFT_monthly_data_len : , : ]
X_test_META_monthly_data, y_test_META_monthly_data = [], META_monthly_dataset[training_META_monthly_data_len : , : ]
# Daily data
for i in range(60,len(test_AAPL_daily_data)):
X_test_AAPL_daily_data.append(test_AAPL_daily_data[i-60:i,0])
for i in range(60,len(test_MSFT_daily_data)):
X_test_MSFT_daily_data.append(test_MSFT_daily_data[i-60:i,0])
for i in range(60,len(test_META_daily_data)):
X_test_META_daily_data.append(test_META_daily_data[i-60:i,0])
# Weekly data
for i in range(60,len(test_AAPL_weekly_data)):
X_test_AAPL_weekly_data.append(test_AAPL_weekly_data[i-60:i,0])
for i in range(60,len(test_MSFT_weekly_data)):
X_test_MSFT_weekly_data.append(test_MSFT_weekly_data[i-60:i,0])
for i in range(60,len(test_META_weekly_data)):
X_test_META_weekly_data.append(test_META_weekly_data[i-60:i,0])
# Monthly data
for i in range(60,len(test_AAPL_monthly_data)):
X_test_AAPL_monthly_data.append(test_AAPL_monthly_data[i-60:i,0])
for i in range(60,len(test_MSFT_monthly_data)):
X_test_MSFT_monthly_data.append(test_MSFT_monthly_data[i-60:i,0])
for i in range(60,len(test_META_monthly_data)):
X_test_META_monthly_data.append(test_META_monthly_data[i-60:i,0])
# here we are converting X_test to arrays
X_test_AAPL_daily_data, X_test_MSFT_daily_data, X_test_META_daily_data = np.array(X_test_AAPL_daily_data), np.array(X_test_MSFT_daily_data), np.array(X_test_META_daily_data)
X_test_AAPL_weekly_data, X_test_MSFT_weekly_data, X_test_META_weekly_data = np.array(X_test_AAPL_weekly_data), np.array(X_test_MSFT_weekly_data), np.array(X_test_META_weekly_data)
X_test_AAPL_monthly_data, X_test_MSFT_monthly_data, X_test_META_monthly_data = np.array(X_test_AAPL_monthly_data), np.array(X_test_MSFT_monthly_data), np.array(X_test_META_monthly_data)

# reshape the daily data into the shape/dimension accepted by the LSTM
X_test_AAPL_daily_data = np.reshape(X_test_AAPL_daily_data, (X_test_AAPL_daily_data.shape[0],X_test_AAPL_daily_data.shape[1],1))
X_test_MSFT_daily_data = np.reshape(X_test_MSFT_daily_data, (X_test_MSFT_daily_data.shape[0],X_test_MSFT_daily_data.shape[1],1))
X_test_META_daily_data = np.reshape(X_test_META_daily_data, (X_test_META_daily_data.shape[0],X_test_META_daily_data.shape[1],1))
# reshape the daily data into the shape/dimension accepted by the LSTM
X_test_AAPL_weekly_data = np.reshape(X_test_AAPL_weekly_data, (X_test_AAPL_weekly_data.shape[0],X_test_AAPL_weekly_data.shape[1],1))
X_test_MSFT_weekly_data = np.reshape(X_test_MSFT_weekly_data, (X_test_MSFT_weekly_data.shape[0],X_test_MSFT_weekly_data.shape[1],1))
X_test_META_weekly_data = np.reshape(X_test_META_weekly_data, (X_test_META_weekly_data.shape[0],X_test_META_weekly_data.shape[1],1))
# reshape the daily data into the shape/dimension accepted by the LSTM
X_test_AAPL_monthly_data = np.reshape(X_test_AAPL_monthly_data, (X_test_AAPL_monthly_data.shape[0],X_test_AAPL_monthly_data.shape[1],1))
X_test_MSFT_monthly_data = np.reshape(X_test_MSFT_monthly_data, (X_test_MSFT_monthly_data.shape[0],X_test_MSFT_monthly_data.shape[1],1))
X_test_META_monthly_data = np.reshape(X_test_META_monthly_data, (X_test_META_monthly_data.shape[0],X_test_META_monthly_data.shape[1],1))
# now we are getting the models predicted price values (daily)
predictions_AAPL_daily, predictions_MSFT_daily, predictions_META_daily = model.predict(X_test_AAPL_daily_data), model.predict(X_test_MSFT_daily_data), model.predict(X_test_META_daily_data)
predictions_AAPL_daily, predictions_MSFT_daily, predictions_META_daily = scaler.inverse_transform(predictions_AAPL_daily), scaler.inverse_transform(predictions_MSFT_daily), scaler.inverse_transform(predictions_META_daily) #Undo scaling
# now we are getting the models predicted price values (weekly)
predictions_AAPL_weekly, predictions_MSFT_weekly, predictions_META_weekly = model.predict(X_test_AAPL_weekly_data), model.predict(X_test_MSFT_weekly_data), model.predict(X_test_META_weekly_data)
predictions_AAPL_weekly, predictions_MSFT_weekly, predictions_META_weekly = scaler.inverse_transform(predictions_AAPL_weekly), scaler.inverse_transform(predictions_MSFT_weekly), scaler.inverse_transform(predictions_META_weekly)
# now we are getting the models predicted price values (monthly)
predictions_AAPL_monthly, predictions_MSFT_monthly, predictions_META_monthly = model.predict(X_test_AAPL_monthly_data), model.predict(X_test_MSFT_monthly_data), model.predict(X_test_META_monthly_data)
predictions_AAPL_monthly, predictions_MSFT_monthly, predictions_META_monthly = scaler.inverse_transform(predictions_AAPL_monthly), scaler.inverse_transform(predictions_MSFT_monthly), scaler.inverse_transform(predictions_META_monthly)
# here we are calculating the value of RMSE (daily models)
rmse_AAPL_daily = np.sqrt(np.mean(((predictions_AAPL_daily - y_test_AAPL_daily_data)**2)))
rmse_MSFT_daily = np.sqrt(np.mean(((predictions_MSFT_daily - y_test_MSFT_daily_data)**2)))
rmse_META_daily = np.sqrt(np.mean(((predictions_META_daily - y_test_META_daily_data)**2)))
# here we are calculating the value of RMSE (weekly models)
rmse_AAPL_weekly = np.sqrt(np.mean(((predictions_AAPL_weekly - y_test_AAPL_weekly_data)**2)))
rmse_MSFT_weekly = np.sqrt(np.mean(((predictions_MSFT_weekly - y_test_MSFT_weekly_data)**2)))
rmse_META_weekly = np.sqrt(np.mean(((predictions_META_weekly - y_test_META_weekly_data)**2)))
# here we are calculating the value of RMSE (monthly models)
rmse_AAPL_monthly = np.sqrt(np.mean(((predictions_AAPL_monthly - y_test_AAPL_monthly_data)**2)))
rmse_MSFT_monthly = np.sqrt(np.mean(((predictions_MSFT_monthly - y_test_MSFT_monthly_data)**2)))
rmse_META_monthly = np.sqrt(np.mean(((predictions_META_monthly - y_test_META_monthly_data)**2)))
# Create the daily data for visuals
train_AAPL_daily_data, valid_AAPL_daily_data = AAPL_daily_data[:training_AAPL_daily_data_len], AAPL_daily_data[training_AAPL_daily_data_len:]
train_MSFT_daily_data, valid_MSFT_daily_data = MSFT_daily_data[:training_MSFT_daily_data_len], MSFT_daily_data[training_MSFT_daily_data_len:]
train_META_daily_data, valid_META_daily_data = META_daily_data[:training_META_daily_data_len], META_daily_data[training_META_daily_data_len:]
valid_AAPL_daily_data['Predictions'], valid_MSFT_daily_data['Predictions'], valid_META_daily_data['Predictions']= predictions_AAPL_daily, predictions_MSFT_daily, predictions_META_daily
# Create the weekly data for visuals
train_AAPL_weekly_data, valid_AAPL_weekly_data = AAPL_weekly_data[:training_AAPL_weekly_data_len], AAPL_weekly_data[training_AAPL_weekly_data_len:]
train_MSFT_weekly_data, valid_MSFT_weekly_data = MSFT_weekly_data[:training_MSFT_weekly_data_len], MSFT_weekly_data[training_MSFT_weekly_data_len:]
train_META_weekly_data, valid_META_weekly_data = META_weekly_data[:training_META_weekly_data_len], META_weekly_data[training_META_weekly_data_len:]
valid_AAPL_weekly_data['Predictions'], valid_MSFT_weekly_data['Predictions'], valid_META_weekly_data['Predictions'] = predictions_AAPL_weekly, predictions_MSFT_weekly, predictions_META_weekly
# Create the monthly data for visuals
train_AAPL_monthly_data, valid_AAPL_monthly_data = AAPL_monthly_data[:training_AAPL_monthly_data_len], AAPL_monthly_data[training_AAPL_monthly_data_len:]
train_MSFT_monthly_data, valid_MSFT_monthly_data = MSFT_monthly_data[:training_MSFT_monthly_data_len], MSFT_monthly_data[training_MSFT_monthly_data_len:]
train_META_monthly_data, valid_META_monthly_data = META_monthly_data[:training_META_monthly_data_len], META_monthly_data[training_META_monthly_data_len:]
valid_AAPL_monthly_data['Predictions'], valid_MSFT_monthly_data['Predictions'], valid_META_monthly_data['Predictions']= predictions_AAPL_monthly, predictions_MSFT_monthly,predictions_META_monthly

Daily predictions:

#Visualize the data
plt.figure(figsize=(16,8))
plt.title('Apple LSTM Model for Daily Stock Prices')
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.plot(train_AAPL_daily_data['Close'])
plt.plot(valid_AAPL_daily_data[['Close', 'Predictions']])
plt.legend(['Train', 'Val', 'Predictions'], loc='lower right')
plt.show()
predicted_AAPL_daily = pd.DataFrame(predictions_AAPL_daily)
predicted_AAPL_daily.to_csv('predicted_closing_price_AAPL_daily.csv')
print('RMSE: ', rmse_AAPL_daily)
print('R2 Score: ', r2_score(y_test_AAPL_daily_data, predictions_AAPL_daily))
print('MAE: ', mean_absolute_error(y_test_AAPL_daily_data, predictions_AAPL_daily))
#Visualize the data
plt.figure(figsize=(16,8))
plt.title('Microsoft LSTM Model for Daily Stock Prices')
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.plot(train_MSFT_daily_data['Close'])
plt.plot(valid_MSFT_daily_data[['Close', 'Predictions']])
plt.legend(['Train', 'Val', 'Predictions'], loc='lower right')
plt.show()
predicted_MSFT_daily = pd.DataFrame(predictions_MSFT_daily)
predicted_MSFT_daily.to_csv('predicted_closing_price_MSFT_daily.csv')
print('RMSE: ', rmse_MSFT_daily)
print('R2 Score: ', r2_score(y_test_MSFT_daily_data, predictions_MSFT_daily))
print('MAE: ', mean_absolute_error(y_test_MSFT_daily_data, predictions_MSFT_daily))
#Visualize the data
plt.figure(figsize=(16,8))
plt.title('Meta LSTM Model for Daily Stock Prices')
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.plot(train_META_daily_data['Close'])
plt.plot(valid_META_daily_data[['Close', 'Predictions']])
plt.legend(['Train', 'Val', 'Predictions'], loc='lower right')
plt.show()
predicted_META_daily = pd.DataFrame(predictions_META_daily)
predicted_META_daily.to_csv('predicted_closing_price_META_daily.csv')
print('RMSE: ', rmse_META_daily)
print('R2 Score: ', r2_score(y_test_META_daily_data, predictions_META_daily))
print('MAE: ', mean_absolute_error(y_test_META_daily_data, predictions_META_daily))

Weekly Predictions:

#Visualize the data
plt.figure(figsize=(16,8))
plt.title('Apple LSTM Model for Weekly Stock Prices')
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.plot(train_AAPL_weekly_data['Close'])
plt.plot(valid_AAPL_weekly_data[['Close', 'Predictions']])
plt.legend(['Train', 'Val', 'Predictions'], loc='lower right')
plt.show()
predicted_AAPL_weekly = pd.DataFrame(predictions_AAPL_weekly)
predicted_AAPL_weekly.to_csv('predicted_closing_price_AAPL_weekly.csv')
print('RMSE: ', rmse_AAPL_weekly)
print('R2 Score: ', r2_score(y_test_AAPL_weekly_data, predictions_AAPL_weekly))
print('MAE: ', mean_absolute_error(y_test_AAPL_weekly_data, predictions_AAPL_weekly))
#Visualize the data
plt.figure(figsize=(16,8))
plt.title('Microsoft LSTM Model for Weekly Stock Prices')
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.plot(train_MSFT_weekly_data['Close'])
plt.plot(valid_MSFT_weekly_data[['Close', 'Predictions']])
plt.legend(['Train', 'Val', 'Predictions'], loc='lower right')
plt.show()
predicted_MSFT_weekly = pd.DataFrame(predictions_MSFT_weekly)
predicted_MSFT_weekly.to_csv('predicted_closing_price_MSFT_weekly.csv')
print('RMSE: ', rmse_MSFT_weekly)
print('R2 Score: ', r2_score(y_test_MSFT_weekly_data, predictions_MSFT_weekly))
print('MAE: ', mean_absolute_error(y_test_MSFT_weekly_data, predictions_MSFT_weekly))
#Visualize the data
plt.figure(figsize=(16,8))
plt.title('Meta LSTM Model for Weekly Stock Prices')
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.plot(train_META_weekly_data['Close'])
plt.plot(valid_META_weekly_data[['Close', 'Predictions']])
plt.legend(['Train', 'Val', 'Predictions'], loc='lower right')
plt.show()
predicted_META_weekly = pd.DataFrame(predictions_META_weekly)
predicted_META_weekly.to_csv('predicted_closing_price_META_weekly.csv')
print('RMSE: ', rmse_META_weekly)
print('R2 Score: ', r2_score(y_test_META_weekly_data, predictions_META_weekly))
print('MAE: ', mean_absolute_error(y_test_META_weekly_data, predictions_META_weekly))

Monthly Predictions:

#Visualize the data
plt.figure(figsize=(16,8))
plt.title('Apple LSTM Model for Monthly Stock Prices')
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.plot(train_AAPL_monthly_data['Close'])
plt.plot(valid_AAPL_monthly_data[['Close', 'Predictions']])
plt.legend(['Train', 'Val', 'Predictions'], loc='lower right')
plt.show()
predicted_AAPL_monthly = pd.DataFrame(predictions_AAPL_monthly)
predicted_AAPL_monthly.to_csv('predicted_closing_price_AAPL_monthly.csv')
print('RMSE: ', rmse_AAPL_monthly)
print('R2 Score: ', r2_score(y_test_AAPL_monthly_data, predictions_AAPL_monthly))
print('MAE: ', mean_absolute_error(y_test_AAPL_monthly_data, predictions_AAPL_monthly))
#Visualize the data
plt.figure(figsize=(16,8))
plt.title('Microsoft LSTM Model for Monthly Stock Prices')
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.plot(train_MSFT_monthly_data['Close'])
plt.plot(valid_MSFT_monthly_data[['Close', 'Predictions']])
plt.legend(['Train', 'Val', 'Predictions'], loc='lower right')
plt.show()
predicted_MSFT_monthly = pd.DataFrame(predictions_MSFT_monthly)
predicted_MSFT_monthly.to_csv('predicted_closing_price_MSFT_monthly.csv')
print('RMSE: ', rmse_MSFT_monthly)
print('R2 Score: ', r2_score(y_test_MSFT_monthly_data, predictions_MSFT_monthly))
print('MAE: ', mean_absolute_error(y_test_MSFT_monthly_data, predictions_MSFT_monthly))
#Visualize the data
plt.figure(figsize=(16,8))
plt.title('Meta LSTM Model for Monthly Stock Prices')
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.plot(train_META_monthly_data['Close'])
plt.plot(valid_META_monthly_data[['Close', 'Predictions']])
plt.legend(['Train', 'Val', 'Predictions'], loc='lower right')
plt.show()
predicted_META_monthly = pd.DataFrame(predictions_META_monthly)
predicted_META_monthly.to_csv('predicted_closing_price_META_monthly.csv')
print('RMSE: ', rmse_META_monthly)
print('R2 Score: ', r2_score(y_test_META_monthly_data, predictions_META_monthly))
print('MAE: ', mean_absolute_error(y_test_META_monthly_data, predictions_META_monthly))

Summary:

The forecasting was done with the use of the closing stock prices for the respective time-frequency dataset. For training, we use mean squared error to optimize our model. We used different Epochs for training data (25 epochs and batch size of 5 for AAPL and 1 epoch and batch size for MSFT and META) to obtain more desirable RMSE values. We built an LSTM model and 80% of the data was used for training and the other 20% of data for testing/validation.

The RMSE values for the predictions are given in the table below:

Save the LSTM model:

lstm_model.save("saved_model.h5")

Conclusion:

This project proposes RNN based on LSTM built to forecast future values for both MSFT and META assets at the weekly interval, the result from our model shows some promising results as seen from the RMSE values and the graphical representation. The testing result confirms that our model is capable of tracing the evolution of opening prices for both assets. For our future work, we could try more range of hyperparameter tuning to get to the global minima of the loss function.

References:

[1] Batres-Estrada, B. (2015). Deep learning for multivariate financial time series.

[2] Emerson, S., Kennedy, R., O’Shea, L., & O’Brien, J. (2019, May). Trends and Applications of Machine Learning in Quantitative Finance. In 8th International Conference on Economics and Finance Research (ICEFR 2019).

[3] Heaton, J. B., Polson, N. G., & Witte, J. H. (2017). Deep learning for finance: deep portfolios. Applied Stochastic Models in Business and Industry, 33(1), 3–12.

[4] Moritz, B., & Zimmermann, T. (2016). Tree-based conditional portfolio sorts: The relation between past and future stock returns. Available at SSRN 2740751.

[5] Olah, C. (2015). Understanding lstm networks–colah’s blog. Colah. github. io.

[6] Paiva, F. D., Cardoso, R. T. N., Hanaoka, G. P., & Duarte, W. M. (2018). Decision-Making for Financial Trading: A Fusion Approach of Machine Learning and Portfolio Selection. Expert Systems with Applications.

[7] Patterson J., 2017. Deep Learning: A Practitioner’s Approach, O’Reilly Media.

[8] Siami-Namini, S., & Namin, A. S. (2018). Forecasting economics and financial time series: Arima vs. lstm. arXiv preprint arXiv:1803.06386.

[9] Takeuchi, L., & Lee, Y. Y. A. (2013). Applying deep learning to enhance momentum trading strategies in stocks. In Technical Report. Stanford University.

For more information on code and datasets, checkout my github

--

--